Table of contents
- 0. Functions7h 52m
- Introduction to Functions16m
- Piecewise Functions10m
- Properties of Functions9m
- Common Functions1h 8m
- Transformations5m
- Combining Functions27m
- Exponent rules32m
- Exponential Functions28m
- Logarithmic Functions24m
- Properties of Logarithms34m
- Exponential & Logarithmic Equations35m
- Introduction to Trigonometric Functions38m
- Graphs of Trigonometric Functions44m
- Trigonometric Identities47m
- Inverse Trigonometric Functions48m
- 1. Limits and Continuity2h 2m
- 2. Intro to Derivatives1h 33m
- 3. Techniques of Differentiation3h 18m
- 4. Applications of Derivatives2h 38m
- 5. Graphical Applications of Derivatives6h 2m
- 6. Derivatives of Inverse, Exponential, & Logarithmic Functions2h 37m
- 7. Antiderivatives & Indefinite Integrals1h 26m
- 8. Definite Integrals3h 25m
4. Applications of Derivatives
Motion Analysis
Problem 3.6.12d
Textbook Question
Airline travel The following figure shows the position function of an airliner on an out-and-back trip from Seattle to Minneapolis, where s = f(t) is the number of ground miles from Seattle t hours after take-off at 6:00 A.M. The plane returns to Seattle 8.5 hours later at 2:30 P.M. <IMAGE>
d. Determine the velocity of the airliner at noon (t = 6) and explain why the velocity is negative.

1
Identify the position function s = f(t) from the given figure, which represents the distance from Seattle at time t hours after take-off.
Determine the time t corresponding to noon, which is 6 hours after take-off (t = 6).
Calculate the velocity of the airliner at t = 6 by finding the derivative of the position function, v(t) = f'(t).
Evaluate the derivative at t = 6 to find the velocity v(6).
Discuss the meaning of the negative velocity, which indicates that the airliner is moving back towards Seattle at that time.
Recommended similar problem, with video answer:

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
5mPlay a video:
Was this helpful?
Watch next
Master Derivatives Applied To Velocity with a bite sized video explanation from Nick
Start learning