Table of contents
- 0. Functions7h 52m
- Introduction to Functions16m
- Piecewise Functions10m
- Properties of Functions9m
- Common Functions1h 8m
- Transformations5m
- Combining Functions27m
- Exponent rules32m
- Exponential Functions28m
- Logarithmic Functions24m
- Properties of Logarithms34m
- Exponential & Logarithmic Equations35m
- Introduction to Trigonometric Functions38m
- Graphs of Trigonometric Functions44m
- Trigonometric Identities47m
- Inverse Trigonometric Functions48m
- 1. Limits and Continuity2h 2m
- 2. Intro to Derivatives1h 33m
- 3. Techniques of Differentiation3h 18m
- 4. Applications of Derivatives2h 38m
- 5. Graphical Applications of Derivatives6h 2m
- 6. Derivatives of Inverse, Exponential, & Logarithmic Functions2h 37m
- 7. Antiderivatives & Indefinite Integrals1h 26m
1. Limits and Continuity
Finding Limits Algebraically
4:54 minutes
Problem 14
Textbook Question
Textbook QuestionDetermine the following limits.
lim x→a (3x + 1)^2 − (3a + 1)^2 / x − a, where a is constant
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
4mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Limits
A limit is a fundamental concept in calculus that describes the behavior of a function as its input approaches a certain value. In this case, we are interested in the limit of the expression as x approaches a. Understanding limits is crucial for analyzing continuity, derivatives, and integrals, as they form the foundation for these concepts.
Recommended video:
05:50
One-Sided Limits
Difference of Squares
The difference of squares is an algebraic identity that states a^2 - b^2 = (a - b)(a + b). This identity can simplify expressions involving squares, making it easier to evaluate limits. In the given limit problem, recognizing that the expression can be factored using this identity will help in simplifying the limit calculation.
Recommended video:
05:13
Slopes of Tangent Lines
L'Hôpital's Rule
L'Hôpital's Rule is a method for evaluating limits that result in indeterminate forms, such as 0/0 or ∞/∞. It states that if the limit of f(x)/g(x) leads to an indeterminate form, the limit can be found by taking the derivative of the numerator and the derivative of the denominator. This rule is particularly useful in the context of the given limit problem, where direct substitution leads to an indeterminate form.
Recommended video:
Guided course
5:50
Power Rules
Watch next
Master Finding Limits by Direct Substitution with a bite sized video explanation from Callie
Start learningRelated Videos
Related Practice