Table of contents
- 0. Functions7h 52m
- Introduction to Functions16m
- Piecewise Functions10m
- Properties of Functions9m
- Common Functions1h 8m
- Transformations5m
- Combining Functions27m
- Exponent rules32m
- Exponential Functions28m
- Logarithmic Functions24m
- Properties of Logarithms34m
- Exponential & Logarithmic Equations35m
- Introduction to Trigonometric Functions38m
- Graphs of Trigonometric Functions44m
- Trigonometric Identities47m
- Inverse Trigonometric Functions48m
- 1. Limits and Continuity2h 2m
- 2. Intro to Derivatives1h 33m
- 3. Techniques of Differentiation3h 18m
- 4. Applications of Derivatives2h 38m
- 5. Graphical Applications of Derivatives6h 2m
- 6. Derivatives of Inverse, Exponential, & Logarithmic Functions2h 37m
- 7. Antiderivatives & Indefinite Integrals1h 26m
- 8. Definite Integrals3h 25m
4. Applications of Derivatives
Implicit Differentiation
Problem 3.8.5
Textbook Question
5–8. Calculate dy/dx using implicit differentiation.
x = y²

1
Start with the given equation: x = y².
Differentiate both sides of the equation with respect to x, applying implicit differentiation. Remember that when differentiating y², you will need to use the chain rule, resulting in 2y(dy/dx).
Set up the equation after differentiation: 1 = 2y(dy/dx).
Isolate dy/dx by dividing both sides of the equation by 2y: dy/dx = 1/(2y).
Make sure to express dy/dx in terms of y, as the final result will depend on the value of y.
Recommended similar problem, with video answer:

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
2mPlay a video:
Was this helpful?
Watch next
Master Finding The Implicit Derivative with a bite sized video explanation from Nick
Start learningRelated Videos
Related Practice