Table of contents
- 0. Functions7h 52m
- Introduction to Functions16m
- Piecewise Functions10m
- Properties of Functions9m
- Common Functions1h 8m
- Transformations5m
- Combining Functions27m
- Exponent rules32m
- Exponential Functions28m
- Logarithmic Functions24m
- Properties of Logarithms34m
- Exponential & Logarithmic Equations35m
- Introduction to Trigonometric Functions38m
- Graphs of Trigonometric Functions44m
- Trigonometric Identities47m
- Inverse Trigonometric Functions48m
- 1. Limits and Continuity2h 2m
- 2. Intro to Derivatives1h 33m
- 3. Techniques of Differentiation3h 18m
- 4. Applications of Derivatives2h 38m
- 5. Graphical Applications of Derivatives6h 2m
- 6. Derivatives of Inverse, Exponential, & Logarithmic Functions2h 37m
- 7. Antiderivatives & Indefinite Integrals1h 26m
- 8. Definite Integrals3h 25m
4. Applications of Derivatives
Differentials
Problem 4.2.5
Textbook Question
5–7. For each function ƒ and interval [a, b], a graph of ƒ is given along with the secant line that passes though the graph of ƒ at x = a and x = b.
a. Use the graph to make a conjecture about the value(s) of c satisfying the equation (ƒ(b) - ƒ(a)) / (b-a) = ƒ' (c) .
b. Verify your answer to part (a) by solving the equation (ƒ(b) - ƒ(a)) / (b-a) = ƒ' (c) for c.
ƒ(x) = x² / 4 + 1 ; [ -2, 4] <IMAGE>

1
Identify the function f(x) = x² / 4 + 1 and the interval [a, b] = [-2, 4].
Calculate the values of f(a) and f(b) by substituting a and b into the function: f(-2) and f(4).
Use the values obtained to compute the slope of the secant line using the formula (f(b) - f(a)) / (b - a).
Set up the equation (f(b) - f(a)) / (b - a) = f'(c) and find the derivative f'(x) of the function f(x).
Solve the equation for c by substituting the expression for f'(c) into the equation and finding the values of c that satisfy it.
Was this helpful?