Textbook QuestionThe right-sided and left-sided derivatives of a function at a point aa are given by f+′(a)=limh→0+f(a+h)−f(a)hf_{+}^{\prime}\left(a\right)={\displaystyle\lim_{h\to0^{+}}{\frac{f(a+h)-f(a)}{h}}} and f−′(a)=limh→0−f(a+h)−f(a)hf_{-}^{\prime}\left(a\right)={\displaystyle\lim_{h\to0^{-}}{\frac{f(a+h)-f(a)}{h}}}, respectively, provided these limits exist. The derivative f′(a)f^{\prime}\left(a\right) exists if and only if f+′(a)=f−′(a)f_{+}^{\prime}\left(a\right)=f_{-}^{\prime}\left(a\right).Compute f+′(a)f_{+}^{\prime}\left(a\right) and f−′(a)f_{-}^{\prime}\left(a\right) at the given point aa.f(x)=∣x−2∣f\left(x\right)=\left|x-2\right|; a=2a=293views
Textbook QuestionThe right-sided and left-sided derivatives of a function at a point aaa are given by f+′(a)=limh→0+f(a+h)−f(a)hf_{+}^{\prime}\left(a\right)={\displaystyle\lim_{h\to0^{+}}{\frac{f(a+h)-f(a)}{h}}} and f−′(a)=limh→0−f(a+h)−f(a)hf_{-}^{\prime}\left(a\right)={\displaystyle\lim_{h\to0^{-}}{\frac{f(a+h)-f(a)}{h}}}, respectively, provided these limits exist. The derivative f′(a)f^{\prime}\left(a\right)f′(a) exists if and only if f+′(a)=f−′(a)f_{+}^{\prime}\left(a\right)=f_{-}^{\prime}\left(a\right)f+′(a)=f−′(a).Compute f+′(a)f_{+}^{\prime}\left(a\right)f+′(a) and f−′(a)f_{-}^{\prime}\left(a\right)f−′(a) at the given point aaa.f(x)={4−x2 if x≤12x+1 if x>1f(x)=\begin{cases}4-x^2~\text{if}~x\leq{1}\\2x+1~\text{if}~x\gt{1}\end{cases}; a=1a=186views
Textbook QuestionGraph the function f(x)={x if x≤0x+1 if x>0f(x)=\begin{cases}x~~~~~~~~\text{if}~x\leq{0}\\x+1~\text{if}~x\gt{0}\end{cases}.88views
Textbook QuestionIn Exercises 65 and 66, find the derivative using the definition.ƒ(t) = 1 .2t + 176views
Textbook QuestionGraphsMatch the functions graphed in Exercises 27–30 with the derivatives graphed in the accompanying figures (a)–(d)." style="" width="350">" style="" width="200">72views
Textbook QuestionGraphsMatch the functions graphed in Exercises 27–30 with the derivatives graphed in the accompanying figures (a)–(d)." style="max-width: 100%;" width="350">" style="" width="200">57views
Textbook QuestionConsider the function f graphed here. The domain of f is the interval [−4, 6] and its graph is made of line segments joined end to end." style="" width="350">b. Graph the derivative of f. The graph should show a step function.84views