Table of contents
- 0. Functions7h 52m
- Introduction to Functions16m
- Piecewise Functions10m
- Properties of Functions9m
- Common Functions1h 8m
- Transformations5m
- Combining Functions27m
- Exponent rules32m
- Exponential Functions28m
- Logarithmic Functions24m
- Properties of Logarithms34m
- Exponential & Logarithmic Equations35m
- Introduction to Trigonometric Functions38m
- Graphs of Trigonometric Functions44m
- Trigonometric Identities47m
- Inverse Trigonometric Functions48m
- 1. Limits and Continuity2h 2m
- 2. Intro to Derivatives1h 33m
- 3. Techniques of Differentiation3h 18m
- 4. Applications of Derivatives2h 38m
- 5. Graphical Applications of Derivatives6h 2m
- 6. Derivatives of Inverse, Exponential, & Logarithmic Functions2h 37m
- 7. Antiderivatives & Indefinite Integrals1h 26m
- 8. Definite Integrals3h 25m
4. Applications of Derivatives
Differentials
Problem 4.6.67
Textbook Question
Differentials Consider the following functions and express the relationship between a small change in x and the corresponding change in y in the form dy = f'(x)dx.
f(x) = 3x³ - 4x

1
Identify the function f(x) = 3x³ - 4x and determine its derivative f'(x).
Calculate the derivative f'(x) using the power rule, which states that d/dx[x^n] = n*x^(n-1).
Express the relationship between the small change in x (denoted as dx) and the corresponding change in y (denoted as dy) using the formula dy = f'(x)dx.
Substitute the expression for f'(x) into the equation dy = f'(x)dx to relate dy and dx.
Interpret the result to understand how a small change in x affects the change in y based on the derivative.
Was this helpful?