Table of contents
- 1. Introduction to Biology(61)
- 2. Chemistry(39)
- 3. Water(33)
- 4. Biomolecules(81)
- 5. Cell Components(60)
- 6. The Membrane(46)
- 7. Energy and Metabolism(55)
- 8. Respiration(54)
- 9. Photosynthesis(59)
- 10. Cell Signaling(24)
- 11. Cell Division(54)
- 12. Meiosis(55)
- 13. Mendelian Genetics(93)
- Introduction to Mendel's Experiments(3)
- Genotype vs. Phenotype(6)
- Punnett Squares(4)
- Mendel's Experiments(5)
- Mendel's Laws(5)
- Monohybrid Crosses(5)
- Test Crosses(7)
- Dihybrid Crosses(5)
- Punnett Square Probability(10)
- Incomplete Dominance vs. Codominance(5)
- Epistasis(2)
- Non-Mendelian Genetics(8)
- Pedigrees(4)
- Autosomal Inheritance(7)
- Sex-Linked Inheritance(13)
- X-Inactivation(4)
- 14. DNA Synthesis(54)
- 15. Gene Expression(74)
- Central Dogma(6)
- Introduction to Transcription(4)
- Steps of Transcription(8)
- Eukaryotic RNA Processing and Splicing(7)
- Introduction to Types of RNA(6)
- Genetic Code(12)
- Introduction to Translation(4)
- Steps of Translation(5)
- Post-Translational Modification(5)
- Review of Transcription vs. Translation(4)
- Mutations(13)
- 16. Regulation of Expression(57)
- Introduction to Regulation of Gene Expression(2)
- Prokaryotic Gene Regulation via Operons(9)
- The Lac Operon(7)
- Glucose's Impact on Lac Operon(5)
- The Trp Operon(5)
- Review of the Lac Operon & Trp Operon(2)
- Introduction to Eukaryotic Gene Regulation(5)
- Eukaryotic Chromatin Modifications(5)
- Eukaryotic Transcriptional Control(8)
- Eukaryotic Post-Transcriptional Regulation(5)
- Eukaryotic Post-Translational Regulation(4)
- 17. Viruses(23)
- 18. Biotechnology(69)
- 19. Genomics(22)
- 20. Development(33)
- 21. Evolution(44)
- 22. Evolution of Populations(35)
- 23. Speciation(43)
- 24. History of Life on Earth(34)
- 25. Phylogeny(26)
- 26. Prokaryotes(35)
- 27. Protists(27)
- 28. Plants(43)
- 29. Fungi(26)
- 30. Overview of Animals(16)
- 31. Invertebrates(26)
- 32. Vertebrates(47)
- 33. Plant Anatomy(31)
- 34. Vascular Plant Transport(26)
- 35. Soil(31)
- 36. Plant Reproduction(29)
- 37. Plant Sensation and Response(40)
- 38. Animal Form and Function(43)
- 39. Digestive System(42)
- 40. Circulatory System(58)
- 41. Immune System(43)
- 42. Osmoregulation and Excretion(35)
- 43. Endocrine System(36)
- 44. Animal Reproduction(39)
- 45. Nervous System(41)
- 46. Sensory Systems(34)
- 47. Muscle Systems(31)
- 48. Ecology(47)
- Introduction to Ecology(47)
- Biogeography(0)
- Earth's Climate Patterns(0)
- Introduction to Terrestrial Biomes(0)
- Terrestrial Biomes: Near Equator(0)
- Terrestrial Biomes: Temperate Regions(0)
- Terrestrial Biomes: Northern Regions(0)
- Introduction to Aquatic Biomes(0)
- Freshwater Aquatic Biomes(0)
- Marine Aquatic Biomes(0)
- 49. Animal Behavior(35)
- 50. Population Ecology(51)
- Introduction to Population Ecology(51)
- Population Sampling Methods(0)
- Life History(0)
- Population Demography(0)
- Factors Limiting Population Growth(0)
- Introduction to Population Growth Models(0)
- Linear Population Growth(0)
- Exponential Population Growth(0)
- Logistic Population Growth(0)
- r/K Selection(0)
- The Human Population(0)
- 51. Community Ecology(51)
- Introduction to Community Ecology(0)
- Introduction to Community Interactions(24)
- Community Interactions: Competition (-/-)(0)
- Community Interactions: Exploitation (+/-)(0)
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)(0)
- Community Structure(27)
- Community Dynamics(0)
- Geographic Impact on Communities(0)
- 52. Ecosystems(25)
- 53. Conservation Biology(59)
13. Mendelian Genetics
Dihybrid Crosses
13. Mendelian Genetics
Dihybrid Crosses: Study with Video Lessons, Practice Problems & Examples
2PRACTICE PROBLEM
A total of 500 offspring were produced when 100 male cats with black coats and long fur were mated with 100 female cats with the same phenotype. Out of these 500, 281 had black coats and long fur, 93 had black coats and short fur, 92 had brown coats and long fur, and 32 had brown coats and short fur. If both genes are present on different chromosomes, which one do you believe is the recessive allele in each trait studied?
A total of 500 offspring were produced when 100 male cats with black coats and long fur were mated with 100 female cats with the same phenotype. Out of these 500, 281 had black coats and long fur, 93 had black coats and short fur, 92 had brown coats and long fur, and 32 had brown coats and short fur. If both genes are present on different chromosomes, which one do you believe is the recessive allele in each trait studied?