Table of contents
- 1. Introduction to Biology2h 42m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 44m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses19m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport1h 2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System1h 10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System1h 4m
- 44. Animal Reproduction1h 2m
- 45. Nervous System1h 55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
39. Digestive System
Digestion
Problem 4`
Textbook Question
In which digestive system organ does nearly all nutrient absorption occur?
a. Stomach
b. Small intestine
c. Large intestine
d. Pancreas

1
Understand the function of each organ listed in the options: The stomach primarily breaks down food using acids and enzymes, the small intestine is where most digestion and absorption of nutrients occur, the large intestine absorbs water and forms feces, and the pancreas produces enzymes and hormones for digestion.
Recall that nutrient absorption involves the transfer of nutrients from the digestive tract into the bloodstream.
Consider the structure of the small intestine: It has a large surface area due to villi and microvilli, which are specialized for maximizing nutrient absorption.
Compare the roles of the small intestine and the other organs: The small intestine is specifically adapted for absorbing nutrients, unlike the stomach, large intestine, or pancreas.
Conclude that the small intestine is the organ where nearly all nutrient absorption occurs, based on its structure and function.

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
40sPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Digestive System
The digestive system is a complex series of organs and glands that processes food. It involves the breakdown of food into nutrients, which the body uses for energy, growth, and cell repair. Key organs include the stomach, small intestine, large intestine, and pancreas, each playing specific roles in digestion and absorption.
Recommended video:
Guided course
Digestion and Digestive Tracts
Nutrient Absorption
Nutrient absorption is the process by which digested food particles are taken up by the cells lining the digestive tract. This primarily occurs in the small intestine, where nutrients like carbohydrates, proteins, fats, vitamins, and minerals are absorbed into the bloodstream to be distributed throughout the body.
Recommended video:
Guided course
Nutrient Absorption
Small Intestine
The small intestine is a long, coiled organ where most digestion and nutrient absorption occur. It consists of three parts: the duodenum, jejunum, and ileum. The inner surface is lined with villi and microvilli, which increase the surface area for absorption, making it the primary site for nutrient uptake.
Recommended video:
Guided course
Small Intestine and Pancreas
Related Videos
Related Practice