Table of contents
- 1. Introduction to Biology2h 42m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 44m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses19m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport1h 2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System1h 10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System1h 4m
- 44. Animal Reproduction1h 2m
- 45. Nervous System1h 55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
6. The Membrane
Concentration Gradients and Diffusion
Problem 7`
Textbook Question
A substance moving across a membrane against a concentration gradient is moving by ________.
a. Passive transport
b. Osmosis
c. Facilitated diffusion
d. Active transport
e. Diffusion

1
Understand the concept of a concentration gradient: A concentration gradient occurs when there is a difference in the concentration of a substance across a membrane, with one side having a higher concentration than the other.
Recognize the term 'against a concentration gradient': This means the substance is moving from an area of lower concentration to an area of higher concentration, which requires energy input because it goes against the natural flow of diffusion.
Review the definitions of the options provided: a) Passive transport involves movement along the concentration gradient without energy input. b) Osmosis is the movement of water across a membrane. c) Facilitated diffusion is passive transport with the help of transport proteins. d) Active transport requires energy to move substances against the concentration gradient. e) Diffusion is the passive movement of molecules along the concentration gradient.
Identify the correct process: Since the problem specifies movement against the concentration gradient, the process must involve energy input, which eliminates passive transport, osmosis, facilitated diffusion, and diffusion.
Conclude that the correct answer is active transport, as it is the only process that moves substances against the concentration gradient using energy, typically in the form of ATP.

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
47sPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Concentration Gradient
A concentration gradient refers to the difference in the concentration of a substance across a space or membrane. Substances tend to move from areas of higher concentration to areas of lower concentration, which is a fundamental principle in understanding how molecules move within biological systems.
Recommended video:
Guided course
Concentration Gradients and Diffusion
Active Transport
Active transport is the process by which substances move across a cell membrane against their concentration gradient, requiring energy, typically in the form of ATP. This mechanism is crucial for maintaining cellular homeostasis and allowing cells to uptake necessary nutrients or expel waste products.
Recommended video:
Guided course
Active Transport
Passive Transport
Passive transport is the movement of substances across a cell membrane without the use of energy, occurring along the concentration gradient. This includes processes like diffusion, osmosis, and facilitated diffusion, where molecules move from areas of higher concentration to lower concentration until equilibrium is reached.
Recommended video:
Guided course
Passive vs. Active Transport
Watch next
Master Concentration Gradients and Diffusion with a bite sized video explanation from Jason
Start learningRelated Videos
Related Practice