Table of contents
- 1. Introduction to Biology2h 42m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 44m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses19m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport1h 2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System1h 10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System1h 4m
- 44. Animal Reproduction1h 2m
- 45. Nervous System1h 55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
9. Photosynthesis
Pigments of Photosynthesis
Problem 1`
Textbook Question
How is energy transferred among antenna pigment molecules?
a. By heat
b. By redox reactions
c. By fluorescence
d. By resonance

1
Understand the role of antenna pigment molecules: These molecules are part of the photosynthetic apparatus in plants and algae, responsible for capturing light energy.
Recognize the concept of resonance energy transfer: This is a process where energy is transferred from one molecule to another without the movement of electrons, typically occurring in photosynthetic systems.
Identify the mechanism of energy transfer: In photosynthesis, energy captured by antenna pigments is transferred to the reaction center through resonance energy transfer, allowing the energy to be used in chemical reactions.
Differentiate resonance from other forms of energy transfer: Unlike heat transfer, which involves thermal energy, or redox reactions, which involve electron transfer, resonance energy transfer involves the transfer of energy through electromagnetic interactions.
Conclude that resonance energy transfer is the correct mechanism: This process allows efficient energy transfer among antenna pigment molecules, facilitating the conversion of light energy into chemical energy.

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
3mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Antenna Pigment Molecules
Antenna pigment molecules are part of the photosynthetic apparatus in plants and algae, responsible for capturing light energy. These pigments, such as chlorophylls and carotenoids, absorb photons and transfer the energy to the reaction center, initiating the process of photosynthesis. Their arrangement allows efficient energy transfer through resonance energy transfer.
Recommended video:
Guided course
Pigments of Photosynthesis
Resonance Energy Transfer
Resonance energy transfer, also known as Förster resonance energy transfer (FRET), is a mechanism by which energy is transferred non-radiatively between molecules. In photosynthesis, this process occurs when an excited electron in one pigment molecule transfers its energy to a neighboring molecule without the emission of a photon, facilitating efficient energy movement within the antenna complex.
Recommended video:
Guided course
Introduction to Energy
Photosynthesis
Photosynthesis is the process by which green plants, algae, and some bacteria convert light energy into chemical energy stored in glucose. It involves capturing light energy through antenna pigments, transferring it to the reaction center, and using it to drive the synthesis of ATP and NADPH, which are then used to fix carbon dioxide into organic compounds.
Recommended video:
Guided course
Pigments of Photosynthesis
Watch next
Master Pigments of Photosynthesis with a bite sized video explanation from Jason
Start learningRelated Videos
Related Practice