After the stomach, the food, or as we should call it now, the chyme, will enter the small intestine through the pyloric sphincter. The small intestine is a long tube in which digestion is going to occur, and also, this is very important, absorption. This is where you get to finally get the payoff for this and absorb those nutrients. And, the small intestine is actually going to be assisted by the pancreas and the liver, who are going to provide some nice secretions that will help with the digestive process. Now, small intestines often lead to some misconceptions because it's actually longer than the large intestine; it just has a smaller diameter. And in fact, it's really long, it's like 6 meters long, which, you know, if you think that a meter is, like, approximately, like, a little more than 3 feet, you're talking about roughly 20 feet here. Obviously, humans aren't 20 feet long, and that's because our small intestine is all wrapped up to minimize the amount of space they take up, but because they're super long, they have a lot of surface area. And this surface area is actually even longer, due to some cool modifications that the small intestine has. Now first, if we look at the small intestine here, you can see that the tissue on the inside of the intestine has these folds in it. Right? That's what these little lines are. Basically, the tissue itself is made to fold to increase the amount of surface area on the inside of the small intestine. Now this fold, if you zoom in, is actually covered in what are called villi. So basically, this fold has all these little projections on it, these villi, and these villi are in turn covered in what are called microvilli. So the villi, the cells of the villi rather, the enterocytes have these little hair-like structures on their tips called microvilli. This is going to result in a crazy amount of surface area. Right? We have the tissue itself folded, those folds are covered in villi, and those villi are covered in microvilli. So we are maximizing surface area here. Now villi actually surround blood vessels, as you can see in this image here, and they also have what's called a lacteal in them. And, this structure here, it's a lacteal, and basically, it's a lymphatic vessel. The lymphatic system is going to be a system involved in both circulation and immune functions, and we'll talk about it at a different time. Just know that it has projections into these villi, as do blood vessels. Now the duodenum is what we call the start of the small intestine. That's where the chyme is going to enter. And the duodenum secretes hormones in response to the chyme. Two of these hormones are secretin, which is a hormone that's going to stimulate bicarbonate release from the pancreas, and that's super important because remember, the chyme is filled with acids. And you don't want all that acid sitting in your poor small intestines, so they're going to ask for some bicarbonate from the pancreas to help neutralize the acid. The other hormone is cholecystokinin (CCK). That's what they call it in med school and stuff; that's what everyone calls it; it's a lot easier. So CCK is going to be the hormone that stimulates the pancreas to secrete digestive enzymes. See, not only does the pancreas provide a nice bicarbonate solution for the chyme to cool off, so to speak, it's also going to secrete a bunch of enzymes that digest the food coming from the stomach. Now these include things like nucleases, which break down nucleic acids, pancreatic amylase, which, similar to salivary amylase, is going to break down carbohydrates into maltose and dextrins, as well as pancreatic lipases that break triacylglycerides into two fatty acids and a monoacylglyceride. Now, the pancreas will also secrete proteases. And two of the important ones to take note of are trypsin and chymotrypsin. And these are proteases that break down proteins into smaller polypeptides. It should be noted that they actually will only break specific polypeptide bonds. That is peptide bonds between specific types of amino acids. So just like other enzymes, they are very specific as to what they will act on. What's cool about these is they're actually also zymogens, like pepsinogens, so they're released as trypsinogen and chymotrypsinogen. And this enzyme called enterokinase, which is produced by the small intestine, is what will activate trypsinogen, and that leads to the activation of other proteases, which will help break down those polypeptides. Now, with that, let's flip the page.
Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
39. Digestive System
Digestion
Video duration:
6mPlay a video:
Related Videos
Related Practice