Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
15. Gene Expression
Mutations
0:50 minutes
Problem 1a
Textbook Question
Textbook QuestionIf a base-pair change occurs in DNA, this a. is a mutation. b. would be a mutation only if it falls in a protein-coding part of a gene. c. would be a mutation only if it falls in a transcribed part of the genome. d. is not a mutation, because only one base pair has been altered.
Verified step by step guidance
1
Understand the definition of a mutation: A mutation is any change that occurs in the sequence of DNA, regardless of its location or the number of base pairs involved.
Consider the impact of a single base-pair change: Even a change in just one base pair can affect the DNA sequence and potentially alter the function of a gene or its regulatory elements.
Evaluate the options given in the question: Analyze each option to determine if it aligns with the definition and characteristics of a mutation.
Identify the correct option: Choose the option that correctly states that any base-pair change in DNA, regardless of its location or effect, is considered a mutation.
Eliminate incorrect options: Options that specify the mutation must occur in specific parts of the DNA or suggest that a single base-pair change is not a mutation do not align with the broad definition of a mutation.
Recommended similar problem, with video answer:
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
50sPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Mutation
A mutation is a permanent alteration in the DNA sequence that makes up a gene. Mutations can occur due to various factors, including environmental influences or errors during DNA replication. They can affect a single base pair or larger segments of DNA, and their consequences can range from benign to significant, potentially leading to diseases or changes in traits.
Recommended video:
Guided course
02:29
Mutations
Protein-Coding Genes
Protein-coding genes are segments of DNA that contain the instructions for synthesizing proteins. These genes are transcribed into messenger RNA (mRNA), which is then translated into a specific protein. Mutations in protein-coding regions can lead to changes in the amino acid sequence of proteins, potentially altering their function and impacting the organism's phenotype.
Recommended video:
Guided course
01:28
Genetic Code
Transcription and Transcribed Regions
Transcription is the process by which the information in a gene's DNA is copied into mRNA. Transcribed regions include not only protein-coding sequences but also non-coding regions that may play regulatory roles. Mutations in these areas can influence gene expression and the overall function of the genome, even if they do not directly alter protein sequences.
Recommended video:
Guided course
05:51
Introduction to Transcription
Watch next
Master Mutations with a bite sized video explanation from Jason Amores Sumpter
Start learning