In this video, we're going to talk about some of the scientists that help with discovering the structure of DNA. Way back in the early 1950s, a female scientist named Rosalind Franklin actually used a technique called x-ray diffraction on DNA, and she used x-ray diffraction on DNA to capture an incredibly important photo that is well known as photo 51. If we take a look at our image down below over here on the left-hand side, you can see an image of the scientist Rosalind Franklin, and you can also see an image of Franklin's photo 51, which again is showing an x-ray diffraction pattern of DNA. What you'll notice is in this x-ray diffraction pattern, these bands create a kind of X-like formation. Through very complicated concepts and math, it turns out that photo 51 here is actually evidence to show that DNA has a double helix structure. However, it wasn't until 1953 that the scientists James Watson and Francis Crick actually were able to use Franklin's photo 51 along with other information that they knew to help them describe the structure of DNA as a double helix structure with 2 antiparallel strands of nucleotides. This is information that we had already covered in some of our previous lesson videos when we first introduced DNA. If you don't remember the information from those older videos on DNA, be sure to go back and check out those older videos on DNA. Watson and Crick had also come up with how these base pairing rules apply, known as Watson and Crick base pairing. Watson and Crick base pairing basically describes how nucleotides on opposite strands of DNA will pair with each other via hydrogen bonds, where all of the adenines or A's would base pair with all of the thymines or T's on opposite strands, and all of the cytosines would base pair and hydrogen bond with all of the guanines on opposite strands. So C's base pair with G's. This is going to be really important information for you guys to be able to keep in mind how the base pairing works, A's with T's and C's with G's. If we take a look at our image down below, over here on the right-hand side, we're showing you the images of James Watson and Francis Crick, who again were able to use Rosalind Franklin's photo 51 along with other information that they knew to help reveal the structure of DNA as a double helix structure where there are 2 strands of nucleotides that are antiparallel with respect to each other. Recall from our previous lesson videos when we first introduced DNA that antiparallel is just referring to the fact that one strand will go from 5 prime to 3 prime in one direction from left to right here, whereas the other strand would go from 5 prime to 3 prime in the opposite direction, and that's why they're called antiparallel. This image over here is showing you how the Watson and Crick base pairing works, where all of the cytosines or C's base pair with all the guanines or G's, and all of the adenines or A's base pair with all of the thymines or T's on opposite strands. And this blue backbone that you see here of the molecule represents a sugar phosphate backbone. We'll get to talk a little bit more about the details of the DNA structure in our next lesson video. But for now, this here concludes our introduction to how the DNA structure was discovered, and we'll be able to get some practice as we move forward in our course. So I'll see you all in our next video.
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
14. DNA Synthesis
Discovering the Structure of DNA
Video duration:
4mPlay a video:
Related Videos
Related Practice
Discovering the Structure of DNA practice set
