Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
51. Community Ecology
Introduction to Community Interactions
2:53 minutes
Problem 12b
Textbook Question
Textbook QuestionThe carnivorous plant Nepenthes bicalcarata ('fanged pitcher plant') has a unique relationship with a species of ant—Camponotus schmitzi ('diving ant'). The diving ants are not digested by the pitcher plants, but instead live on the plants and consume nectar. Diving ants also dive into the digestive juices in the pitcher, swim to the bottom, and capture and consume trapped insects, leaving uneaten body parts and ant feces behind. What nutritional impact do the ants have on fanged pitcher plants? Do the pitcher plants derive any nutritional benefit from this relationship? Researchers tested the hypothesis that the relationship between diving ants and pitcher plants is mutualistic (i.e., both species derive a nutritional benefit). To do so, they compared leaf surface area (as a measure of overall growth) in two sets of pitcher plants: plants with diving ants and plants without. The results are shown in the graph. The P values indicate whether there is a significant relationship between the size of the host plants and the surface area of the host plants' leaves. Based on this graph, what conclusions can be drawn about the impact of diving ants on overall plant growth?
Verified step by step guidance
1
Identify the mutualistic relationship: Understand that the diving ants live symbiotically with the Nepenthes bicalcarata, consuming nectar and trapped insects, which could potentially provide nutritional benefits to the plant.
Analyze the experimental setup: Recognize that researchers used leaf surface area as a proxy for plant growth and health, comparing plants with ants to those without to assess the impact of the ants.
Interpret the graph results: Look for differences in leaf surface area between the two groups. A larger leaf surface area in plants with ants would suggest a beneficial effect from the ants.
Examine the P values: Determine if the differences observed are statistically significant. A P value less than 0.05 typically indicates a significant effect.
Draw conclusions: If plants with ants show significantly larger leaf surface areas, conclude that the presence of diving ants positively impacts the growth of Nepenthes bicalcarata, supporting the hypothesis of a mutualistic relationship.
Recommended similar problem, with video answer:
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
2mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Mutualism
Mutualism is a type of symbiotic relationship where both species involved benefit from the interaction. In the case of Nepenthes bicalcarata and Camponotus schmitzi, the ants gain food from the plant's nectar, while the plant may receive nutrients from the ants' waste and the remains of trapped insects. Understanding mutualism is crucial for analyzing the ecological interactions and benefits that arise from such relationships.
Recommended video:
Guided course
02:56
Positive Interactions
Nutrient Cycling
Nutrient cycling refers to the movement and exchange of organic and inorganic matter back into the production of living matter. In this context, the ants contribute to nutrient cycling by consuming trapped insects and leaving behind waste, which can enhance the nutrient availability for the pitcher plant. This concept is essential for understanding how organisms interact within ecosystems and the potential benefits of such interactions.
Recommended video:
Guided course
03:25
Soil Nutrients
Experimental Design and P-Values
Experimental design involves planning how to test a hypothesis, including selecting control and experimental groups. In this study, the comparison of leaf surface area between pitcher plants with and without diving ants serves to evaluate the impact of the ants on plant growth. P-values are statistical measures that help determine the significance of the results, indicating whether the observed differences are likely due to chance or reflect a true effect of the ants on plant growth.
Recommended video:
Guided course
02:50
Experimental Design Example 1
Watch next
Master Introduction to Community Interactions with a bite sized video explanation from Jason Amores Sumpter
Start learningRelated Videos
Related Practice