Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
15. Gene Expression
Mutations
0:50 minutes
Problem 1b
Textbook Question
Textbook QuestionIf a base-pair change occurs in DNA, this a. is a mutation. b. would be a mutation only if it falls in a protein-coding part of a gene. c. would be a mutation only if it falls in a transcribed part of the genome. d. is not a mutation, because only one base pair has been altered.
Verified step by step guidance
1
Understand the definition of a mutation: A mutation is any change that occurs in the sequence of DNA, regardless of its location or the number of bases involved.
Identify what a base-pair change implies: A base-pair change means that one of the base pairs in the DNA sequence has been altered, which could be a substitution, deletion, or insertion of bases.
Consider the effect of the location of the mutation: While the effect of a mutation can vary depending on whether it occurs in a coding or non-coding region, the definition of a mutation does not depend on its location.
Evaluate the options given in the question: Option (a) states that any base-pair change is a mutation, which aligns with the definition of a mutation. The other options limit the definition of a mutation to specific regions or imply that a single base change is not a mutation.
Choose the correct answer based on the definition and characteristics of mutations: The correct answer is (a) because a mutation is defined as any change in the DNA sequence, regardless of its size or location.
Recommended similar problem, with video answer:
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
50sPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Mutation
A mutation is a change in the DNA sequence that can occur due to various factors, such as environmental influences or errors during DNA replication. Mutations can be classified as point mutations, where a single base pair is altered, or larger-scale changes affecting multiple nucleotides. They can have varying effects on an organism, ranging from benign to harmful, depending on their location and nature.
Recommended video:
Guided course
02:29
Mutations
Protein-Coding Genes
Protein-coding genes are segments of DNA that contain the instructions for synthesizing proteins, which are essential for various cellular functions. Mutations occurring within these regions can lead to changes in the protein's structure and function, potentially resulting in diseases or altered traits. Understanding the distinction between coding and non-coding regions is crucial for assessing the impact of mutations.
Recommended video:
Guided course
01:28
Genetic Code
Transcription and Transcribed Regions
Transcription is the process by which DNA is copied into RNA, specifically messenger RNA (mRNA), which then serves as a template for protein synthesis. Transcribed regions include both protein-coding sequences and non-coding RNA genes. Mutations in these areas can affect gene expression and the resulting RNA products, influencing cellular behavior and organismal traits.
Recommended video:
Guided course
05:51
Introduction to Transcription
Watch next
Master Mutations with a bite sized video explanation from Jason Amores Sumpter
Start learning