Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny40m
- 26. Prokaryotes4h 59m
- 27. Protists1h 6m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
47. Muscle Systems
Musculoskeletal System
2:42 minutes
Problem 12b
Textbook Question
Textbook QuestionDistance runner Paula Radcliffe has won dozens of long-distance races and held the women's world record for the marathon since 2003. Scientists, trainers, and athletes alike have wondered about the extent to which muscle structure and function contribute to success in athletes such as Radcliffe. What makes elite distance runners so good? Are their muscles somehow different from those of less successful athletes and non-athletes? Predict who would likely have a greater proportion of fast glycolytic fibers in their gastrocnemius (calf) muscle—an elite distance runner or an elite sprinter. Explain.
Verified step by step guidance
1
Understand the types of muscle fibers: There are primarily two types of muscle fibers in humans - slow-twitch (Type I) fibers and fast-twitch (Type II) fibers. Slow-twitch fibers are more efficient at using oxygen to generate more fuel (known as ATP) for continuous, extended muscle contractions over a long time. Fast-twitch fibers are better at generating short bursts of strength or speed than slow-twitch fibers but fatigue more quickly.
Identify the muscle fiber types predominant in different athletes: Elite distance runners, like Paula Radcliffe, predominantly use their slow-twitch muscle fibers because these fibers are more efficient at using oxygen to generate the ATP needed for endurance activities. On the other hand, elite sprinters rely more on fast-twitch fibers, particularly the fast glycolytic fibers, which provide quick bursts of speed and power but fatigue quickly.
Compare the muscle fiber distribution in distance runners and sprinters: Given that distance running requires endurance and efficient energy usage over time, distance runners have a higher proportion of slow-twitch fibers. In contrast, sprinting demands rapid, intense bursts of power and speed, which are characteristics of fast-twitch fibers, especially the fast glycolytic type.
Predict the muscle fiber composition in the gastrocnemius muscle: Based on the demands of their respective sports, an elite sprinter would likely have a greater proportion of fast glycolytic fibers in their gastrocnemius muscle compared to an elite distance runner. The sprinter's muscle composition is optimized for speed and power, whereas the distance runner's muscle composition is optimized for endurance and efficiency.
Conclude the muscle fiber type distribution: Therefore, in comparing the gastrocnemius muscle of an elite distance runner and an elite sprinter, the sprinter would have a higher proportion of fast glycolytic fibers, which are crucial for the short, explosive movements required in sprinting.
Recommended similar problem, with video answer:
Verified Solution
Video duration:
2mPlay a video:
Related Videos
Related Practice