Table of contents
- 1. Introduction to Biology2h 42m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 44m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses19m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport1h 2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System1h 10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System1h 4m
- 44. Animal Reproduction1h 2m
- 45. Nervous System1h 55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
34. Vascular Plant Transport
Water Potential
Problem 14d`
Textbook Question
Atmospheric CO₂ has been increasing rapidly since the late 1800s, largely due to human activities. Recall that CO₂ enters leaves through stomata and can then be used for photosynthesis. However, transpiration occurs as a result of water evaporating through stomata.
How have plants responded to elevated CO₂ levels?
One prediction of global climate change is that there will be an increase in periods of drought in some regions. Given the data just presented, will plants be more or less likely to survive periods of drought as they are exposed to rising CO₂ levels?

1
Understand the role of stomata: Stomata are small openings on the surface of leaves that allow for gas exchange. CO2 enters through stomata for photosynthesis, while water vapor exits during transpiration.
Consider the effect of elevated CO2 levels: Higher CO2 concentrations can lead to partial closure of stomata, reducing water loss through transpiration while still allowing sufficient CO2 uptake for photosynthesis.
Analyze the impact on drought survival: With stomata partially closed, plants may conserve water more effectively, potentially increasing their ability to survive during drought conditions.
Evaluate the balance between photosynthesis and water conservation: While reduced transpiration helps conserve water, it is crucial that plants maintain adequate CO2 uptake for photosynthesis to sustain growth and energy production.
Predict plant adaptation strategies: In response to rising CO2 levels and increased drought, plants may evolve or adapt mechanisms to optimize stomatal function, balancing CO2 uptake and water conservation to enhance survival.

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
4mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Photosynthesis
Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy, using carbon dioxide and water to produce glucose and oxygen. Elevated CO2 levels can enhance photosynthesis, potentially increasing plant growth and productivity. Understanding this process is crucial to predicting how plants might respond to changing atmospheric conditions.
Recommended video:
Guided course
Pigments of Photosynthesis
Stomatal Function
Stomata are small openings on the surfaces of leaves that regulate gas exchange, allowing CO2 to enter for photosynthesis and water vapor to exit during transpiration. Plants may adjust stomatal density or opening size in response to elevated CO2 levels, which can affect their water use efficiency and ability to cope with drought conditions.
Recommended video:
Guided course
Functional Groups
Transpiration
Transpiration is the process of water movement through a plant and its evaporation from aerial parts, primarily leaves. It plays a critical role in nutrient transport and temperature regulation. In the context of rising CO2 levels, understanding transpiration helps assess how plants might balance water loss with CO2 uptake, influencing their survival during drought periods.
Recommended video:
Guided course
Water Potential in Soil and Air
Related Videos
Related Practice