In this video, we're going to talk about cloning with recombinant DNA. And so scientists tend to create and clone recombinant DNA for genetic experiments. But what is recombinant DNA? Well, recombinant DNA is really just a molecule that contains DNA from 2 different sources, and these two different sources are often going to be different species. For example, a bacteria and a human. And so bacterial plasmids are going to be very, very important for this lesson. And bacterial plasmids are small, circular DNA molecules that are replicated independently from the bacteria's or the organism's genome, and these bacterial plasmids, these small circular DNA molecules, they can be used as cloning vectors. And cloning vectors are molecules such as plasmids that are capable of carrying a gene of interest, like foreign DNA, into a host cell. And so in our example down below, we're gonna be talking about creating recombinant DNA plasmids to be used as cloning vectors. And so, in this image down below, notice over here on the left-hand side, we're showing you the bacterial plasmid, which is this circular, small circular DNA molecule found in bacteria. And then we're showing you a gene of interest here, which could be from a different species, like for example, a human. And so this is DNA from 2 different sources, the bacteria and the human. And so we can create a recombinant DNA molecule, and the recombinant DNA molecule is gonna be a single molecule that has DNA from 2 different sources. And in this example, the recombinant DNA has DNA from the bacterial plasmid, and it also has the gene of interest, which would be from a different species, like, for example, a human. And so you have a single molecule that has bacterial DNA and human DNA. A single molecule with DNA from 2 different sources would be a recombinant DNA molecule. And this recombinant DNA molecule can serve as a cloning vector. And cloning vectors are just, molecules or plasmids that will carry a gene of interest into a host cell. And so this recombinant DNA can be used to carry the gene of interest here into a host cell, like bacteria host cells. And so here we have a few different bacteria here that all have the recombinant DNA molecule and all have the gene of recombinant DNA molecule and all have the gene of interest. And so in other words what we're saying here is that cloning vectors are forms of recombinant DNA that carry the foreign DNA into the host cell. And once the foreign DNA is in the host cell, it can be replicated by the cell, when the cell goes to replicate itself. And so this is something that we're gonna talk more and more about as we move forward in our course. But for now, this here concludes our brief introduction to cloning with recombinant DNA, and we'll be able to learn more and more about this as we move forward. So I'll see you all in our next video.
Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
18. Biotechnology
Introduction to DNA Cloning
Video duration:
3mPlay a video:
Related Videos
Related Practice
Introduction to DNA Cloning practice set
- Problem sets built by lead tutorsExpert video explanations