In this video, we're going to introduce direct cell signaling. And so direct cell signaling, as its name implies, is going to be local signaling between cells that are in direct contact with each other. And so recall from our previous lesson videos that neighboring cells are able to directly communicate via different types of cell junctions. And so notice down below in our image over here on the left-hand side, we're showing you an example of how cell junctions can be used for direct cell signaling. And so recall that gap junctions are junctions that connect the cytoplasm of 2 animal cells. And so what you'll notice is that these gap junctions, these proteins here, they create a gap between the two cells where the cells are able to exchange nutrients and exchange signaling molecules with each other to directly communicate, and notice that they are in direct physical contact here with these gap junctions. Now over here notice that we have plant cells and plant cells use plasmodesmata as their version of gap junctions that connects their cytoplasm. And so here, we're showing you plasmodesmata, which, again, is gonna connect the cytoplasm of plant cells, allowing them to exchange nutrients, materials, and signaling molecules so that they can be in direct contact and signal and communicate with each other. Now, cell to cell recognition is going to be when cells make direct contact via membrane proteins. And so, these membrane proteins ultimately are gonna cause a cellular response. And so if we take a look at our image down below over here, cell to cell recognition, notice that we have, 2 cells that are in direct contact, this cell here and this cell over here, and notice that they have membrane proteins. This one has green membrane proteins and the other one has purple membrane proteins here. And so what you'll notice is that with cell to cell recognition, a cell is able to recognize the proteins on the surface of another cell, is able to recognize membrane proteins. And so here on the left-hand side, what we have is our signaling cell, and on the right-hand side what we have is the target cell. And the reason this is the target cell is because, ultimately, this is where the cell response is being generated. And so we could say this cell is signaling to this cell to respond. And so this here concludes our introduction to direct cell signaling. And in our next lesson video, we'll talk about indirect cell signaling. So I'll see you all in that video.
Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
10. Cell Signaling
Types of Cell Signaling
Video duration:
3mPlay a video:
Related Videos
Related Practice
Types of Cell Signaling practice set
![](/channels/images/assetPage/ctaCharacter.png)