Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
23. Speciation
Introduction to Speciation
0:34 minutes
Problem 4c
Textbook Question
Textbook QuestionAccording to the biological species concept, species are defined by their a. particular roles in a biological community. b. ability to interbreed and produce viable, fertile offspring. c. reproductive isolation from nearby populations. d. common ancestry.
Verified step by step guidance
1
Understand the Biological Species Concept: This concept emphasizes reproductive isolation among groups of organisms. It is used to define species based on their reproductive compatibility.
Analyze the options: Each option presents a different criterion for defining species. Compare each option with the core idea of the Biological Species Concept.
Identify the key phrase in the Biological Species Concept: Focus on the terms 'interbreed' and 'produce viable, fertile offspring' as these are central to the concept.
Evaluate Option B: This option directly mentions the ability of organisms to interbreed and produce viable, fertile offspring, aligning it with the Biological Species Concept.
Conclude that Option B is the correct answer: Since it is the only option that matches the definition provided by the Biological Species Concept, it is the correct choice.
Recommended similar problem, with video answer:
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
34sPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Biological Species Concept
The Biological Species Concept defines a species as a group of organisms that can interbreed and produce viable, fertile offspring under natural conditions. This concept emphasizes reproductive isolation, meaning that members of different species do not typically mate or produce offspring that can survive and reproduce.
Recommended video:
03:24
Biological Species Concept
Reproductive Isolation
Reproductive isolation refers to mechanisms that prevent different species from interbreeding. This can occur through prezygotic barriers, such as temporal or behavioral differences, or postzygotic barriers, like hybrid inviability or sterility. These mechanisms are crucial for maintaining the integrity of species and preventing gene flow between them.
Recommended video:
02:47
Types of Reproductive Isolation
Common Ancestry
Common ancestry is a concept in evolutionary biology that suggests all species share a common ancestor at some point in their evolutionary history. This idea is fundamental to understanding the relationships between species and how they have diverged over time, contributing to the diversity of life we see today.
Recommended video:
06:39
Common Misconceptions
Watch next
Master Introduction to Speciation with a bite sized video explanation from Bruce Bryan
Start learningRelated Videos
Related Practice