Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
39. Digestive System
Digestion
0:30 minutes
Problem 12b
Textbook Question
Textbook QuestionMinnows are mainly carnivorous, eating insects and other small animals. However, herbivory has evolved independently in minnows several times. What changes in digestive structure and function are associated with the evolution of herbivory? Which of the following is true of the digestive tracts of minnows? a. They are incomplete but have both a mouth and an anus. b. They are complete, facilitating compartmentalization of digestion in different organs. c. They are incomplete, with no accessory organs. d. They are complete and include a large gastrovascular cavity.
Verified step by step guidance
1
Step 1: Let's first understand the difference between carnivorous and herbivorous digestive systems. Carnivores, like minnows, typically have a shorter digestive tract because meat is easier to digest than plant material. Herbivores, on the other hand, have a longer digestive tract to allow for the breakdown of complex carbohydrates found in plants.
Step 2: The evolution of herbivory in minnows would likely involve changes to their digestive system to accommodate a plant-based diet. This could include the development of a longer digestive tract, the evolution of specialized structures for breaking down plant material, and changes in gut microbiota to help digest plant material.
Step 3: Now, let's look at the options for the digestive tracts of minnows. An incomplete digestive tract is one where the mouth and anus are the same opening, while a complete digestive tract has separate openings for the mouth and anus.
Step 4: Minnows, like most fish, have a complete digestive tract. This allows for the compartmentalization of digestion, with different parts of the tract specialized for different functions. Therefore, option b. 'They are complete, facilitating compartmentalization of digestion in different organs.' is correct.
Step 5: The other options are incorrect because minnows do not have an incomplete digestive tract (options a and c), and they do not have a large gastrovascular cavity (option d). A gastrovascular cavity is a characteristic of simpler organisms like cnidarians (jellyfish, sea anemones, etc.), not fish.
Recommended similar problem, with video answer:
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
30sPlay a video:
Was this helpful?
Video transcript
Watch next
Master Food and Feeding with a bite sized video explanation from Jason Amores Sumpter
Start learningRelated Videos
Related Practice