In this video, we're going to begin our lesson on ionic bonding. But before we can talk about ionic bonding, we first need to be able to understand what ions are and we need to be able to distinguish between anions and cations. And so ions is really just a general term that refers to atoms or molecules with a net electrical charge. Now the charge on an ion can either be a negative or a positive charge due to either the gain or the loss of negatively charged electrons. And so really this is what leads to the 2 types of ions which are once again anions and cations. And so anions, as their name implies with so many n's in their name, are going to be negatively charged ions And so these negatively charged anions are going to result from the gain of a negatively charged electron. And so of course if an atom gains a negatively charged electron then it can become an anion, a negatively charged ion. Now on the other hand, cations, as their name implies with the t here, are going to be positively charged. And so you can think the t is for the plus sign that means positively charged. So cations are positively charged ions that result from of course the loss of a negatively charged electron and so if an atom gives up something, a negatively charged electron then itself, it's going to become more positive, it's gonna become more positive itself. And so if we take a look at our example image down below we can further distinguish between anions and cations. Notice here in the center of our image what we're showing you is a single neutral hydrogen atom, and, it is neutral because hydrogen atoms are characterized by having just one proton in their nucleus, and notice that it also has one electron here in this middle image, and so because it has one electron and one proton in its nucleus those two charges cancel each other out and what we get is a neutral hydrogen atom right here in the middle.
Now if this neutral hydrogen atom were to gain a negatively charged electron like this one right here so that it now has 2 electrons instead of just 1 like it did before, then it's gonna have one more electron than proton and that's going to give it an overall net negative charge like what we see here. And so this is what's going to make it an anion. Once again, you can think all of these ends here, the 2 ends in anion, suggest that it is negatively charged.
Now on the other hand if we were to take this neutral hydrogen atom here in the center and this time we were to lose the electron, if there was a loss of the electron, and that electron were transferred to something else, then all we would have is a hydrogen atom with just a single proton in the nucleus and it would not have any electrons and so there would be a positive charge on this hydrogen atom. And so this is what makes it a cation and so you can think that, once again the t here in cation is for the plus sign and positive charge. And so really that's the biggest difference here between anions and cations. Anions are negatively charged whereas cations are positively charged. And if we're just saying the term ion then it could either be an anion or a cation. So we would have to further distinguish, the ion to determine what it is. But for now this here concludes our introduction to ions, anions versus cations, and we'll be able to talk about the ionic bonding as we move forward. So I'll see you all in our next video.
Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
2. Chemistry
Ionic Bonding
Video duration:
4mPlay a video:
Related Videos
Related Practice