I want to briefly mention birds, which are endothermic vertebrates that have feathers, beaks, and lightweight skeletons we often call hollow or bird bones. And the reason I want to bring these guys up is that they are actually part of the monophyletic group, dinosaurs. That is to say, birds are in fact dinosaurs, and dinosaurs are part of the monophyletic group of reptiles. So these guys, even though they look very different, they've evolved to have a very different morphology, are part of that same monophyletic group. So, essentially, birds are dinosaurs. They are the living embodiment of dinosaurs today. And hopefully, you can see that, to a degree with this picture of a feathered dinosaur on the way to becoming a bird next to this roadrunner from today. And yes, it's a roadrunner just like the bird from the cartoon. That's what they actually look like, and they don't go "me me". Also, very quickly, you can see a feathered dinosaur here on its way to adapting birdlike flight as we see over here. Now, amniotes come in 2 basic flavors. Right? There are these sauropsids, which we just talked about. Those are reptiles and birds. And then there are these organisms called synapsids. And these are the group of amniotes that include mammals, and they happen to be distinct from other amniotes, or rather distinguished from other amniotes due to certain features of the skull. You don't really need to worry about that. I am not going to get into it. All I really want to do here is convey how, in a qualitative way, get you to think about how these sort of reptilian looking creatures, these synapses, which, you know, to the untrained eye, these guys the early forms of these creatures really do just look like reptiles. Right? But, hopefully, you can see, through these images I've provided, how they would transition from being more reptilian, like you see here, to something more akin to mammals you're familiar with today. Right? So, the growing of hair is certainly one of those big changes. And also, just the change in, you know, face shape, losing that sort of reptilian look. So here again, we have some more, kind of primitive early synapsids, and they're going to, you know, eventually lead to later synapsids like this guy who, you know, these guys obviously look very reptilian. This guy is kind of a weird transition organism. Right? It sort of has a reptilian look to it, also has hair, one of those weirder transition organisms. And then eventually we're going to, you know, get something more like this which certainly looks like it's on its way to becoming a mammal. Right? Has the fur, has the shape, but there's still something about it that looks, you know, harks back to its more ancestral form. And then, of course, ultimately, we're going to get, you know, rodent-like mammals. These are the earliest mammals to hit the scene. And to be clear, I'm not saying that they are rodents. I'm saying they have a rodent-like appearance. Those are what the earliest mammals look like. So hopefully these pictures can give you an idea of how these early synapsids, which were very reptilian looking, would eventually become mammals.
Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
32. Vertebrates
Aminotes
Video duration:
4mPlay a video:
Related Videos
Related Practice