Hi. In this video, we're going to take a quick tour of some of the major lineages of prokaryotes. We're going to begin with proteobacteria, a diverse clade of gram-negative bacteria that's actually organized into 5 subgroups that are named with Greek letters alpha, beta, gamma, delta, and epsilon. And you can see a phylogenetic tree of proteobacteria right here. Now you might notice that this also includes zeta proteobacteria. This is a newer grouping, and your books likely won't include it. Now, many species of proteobacteria are involved in nitrogen fixation. Don't forget that it was proteobacteria that was engulfed by a cell and eventually would become mitochondria. So, and of course, they led to a super important structure in eukaryotes. Now, moving on, we have Chlamydia which is a group of gram-negative bacteria that lack peptidoglycan in their cell walls. Hopefully, remember that gram-negative bacteria usually have a thin layer of peptidoglycan, below the outer lipopolysaccharide layer. Well, these bacteria don't have that peptidoglycan at all. They're also all parasites. All of the species in this group are parasites that live inside host cells and you can see a picture of that happening right here. These translucent blobs are those host cells and you can see these 3 have these brown spots inside them. Those brown spots are the Chlamydia cells that have been stained with a particular stain, turning them brown so that we can visualize them. Those cells have been infected with Chlamydia. The Chlamydia is living inside of them. Again, if this name sounds familiar, it's because the famous STD, Chlamydia, is caused by bacteria in this group. We often just refer to it as Chlamydia though, the sort of group name. Now, spirochetes are gram-negative heterotrophs and what's distinct about them is their corkscrew shape that you can see in these two pictures. This sort of zoomed-out one, those little dark squiggles, these cells that are stained in yellow in this image. And for a more zoomed-in look, an image of a spirochete, much more zoomed in. You can really see that corkscrew shape of the bacteria. Spirochetes have 2 famous diseases caused by spirochetes that you've probably heard of. Those are Lyme disease and the STD syphilis. Lovely things, spirochetes, right? Lovely diseases. All right. With that, let's and I'm sorry. I'm just making a joke. I'm being sarcastic. Don't mean to make light of diseases caused by these bacteria. But yeah. Basically, the endpoint is nasty little guys, these spirochetes. Alright. With that, let's turn the page to talk about some other bacteria.
Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny40m
- 26. Prokaryotes4h 59m
- 27. Protists1h 6m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
26. Prokaryotes
Prokaryotic Diversity
Video duration:
3mPlay a video:
Related Videos
Related Practice
Prokaryotic Diversity practice set
- Problem sets built by lead tutorsExpert video explanations