Australopithecus is a genus of hominids that lived from about 4,000,000 years ago to about 2,000,000 years ago. The organisms in this genus played an important role in human evolution. Over here, you can see the reconstruction of a skull of an Australopithecus species, Australopithecus afarensis, which you can see that name printed on this map over here. And so that is the species name, and next to that skull, we have a reconstruction of that organism, what people think it might have looked like. This is based on partial fossils that have been uncovered. So, there's some artistic license being taken here. But this is thought to be the ancestor, or an ancestor of modern humans, Australopithecus afarensis, and this particular organism is known commonly as Lucy, which is the common name given to a particular skeleton of the species that was found. As you can see in this map, there are many different species of Australopithecus, and they're found all over Africa. Australopithecus is indeed native to Africa, and there were a bunch of different species in that genus. Now, from that genus arises this new genus, Homo. That's the genus that we belong to. It's thought that the lineage of hominids evolved from possibly Australopithecus afarensis around 2,000,000 years ago. So, let's actually take a look at some of the species in the genus Homo. Now, an early species in the genus Homo is Homo habilis, and that, I'm abbreviating the name here just to be clear. So habilis is short for Homo habilis. And, basically this, this name just means handyman, and these organisms were named for their tool use. They're very early humans, and some scientists actually believe that they're better classified in the Australopithecus genus, rather than the genus Homo. So, that line, that distinction is not super clear-cut. Right? It's not super explicit. There's a vague enough transition that some people even classify Homo habilis as Australopithecus habilis, for example. Another early species is Homo erectus, and also Homo ergaster. These early humans originated in Africa but actually emigrated from the continent. And here in this map behind my head, you can see the path taken by early humans. And we're actually looking at three different species, and in yellow is the distribution of Homo erectus. So you can see they were found in Africa, but they also crossed over, via the Sinai Peninsula, to the Arabian Peninsula. And they also made it into the Indian subcontinent, Southeast Asia. However, it was Homo neanderthalensis that made it up into Europe. Right? So those guys are colored in orange. And you can see that they were found, really, like, all across Europe, into the Bactrian region, all around the Black and Caspian Seas, and even on the island of Albion, or as we know it today, England. Now, these guys, these Homo neanderthalensis, these are what we often commonly refer to as Neanderthals. Right? Who sometimes we also call them cavemen. However, when we say Neanderthal in science, we're actually referring to this particular species or potentially subspecies. There's actually some argument there as to whether Neanderthals are a species or a subspecies of human. And it's worth noting that they do share 99.7% of their DNA with modern humans, which to put that into perspective chimpanzees share about 98.8% of their DNA with modern humans. So this is like a full percentage point closer to modern humans. So very similar DNA. Now humans are known as, Homo sapiens, which means wise man. And Homo sapiens are actually what we call, anatomically modern humans. People living today are thought of as a subspecies. We actually call ourselves Homo sapiens sapiens. Right? So our subspecies of modern humans just tacks on an extra sapiens. Right? So we're not wise man, but wise wise man, like super extra smart, I guess. And you can see that homo sapiens have inhabited the whole planet. We, our trajectory here is shown in red. We spread over Africa, made it up into Europe, Asia, Russia, crossed the Bering Strait into Alaska, down into the Americas, colonized all of the South Pacific region, Oceania, if you will, even went up into the Arctic region. So, our ancestors, I should say. I shouldn't take credit. Our ancestors colonized the whole planet. So, their forebears, the Neanderthals, now another term I want to briefly mention is Cro-Magnon, Cro-Magnon man. Right? Cro-Magnon people. Those are actually just early European Homo sapiens. So those are technically humans. Those are our direct ancestors, in essence. Now, in addition to this map, I also have this other cool chart that shows basically the presence of various species of the Homo genus, and their distribution, and also, like, when they were populating a certain area. So you can see we have Homo ergaster and Homo erectus. And you can see that Homo erectus started in Africa. Right? Spread out into Asia. So I know this chart might look a little confusing. Hopefully, you can kinda get the idea. I don't expect you to draw any terribly important conclusions from it. It's just there to add a little color to this story. Now, one thing I do want to point out though is that there is overlap between Homo neanderthalensis and Homo sapiens. That is to say that Neanderthals and Homo sapiens were contemporaries. They lived at the same time. However, there are no more Neanderthals. Right? Those guys disappeared at some point. Homo sapiens are everywhere now. And, you know, there's a lot of and also, you know, if you look at this figure you notice that the Neanderthals break off way before home sapiens break off. So they represent distinct lineages. Right? So what happened to the Neanderthals? That's a really big question. Where did they go? They were contemporaries with Homo sapiens, now there are none. There are many different theories as to why this is, including, you know, what they call assimilation. Essentially, Neanderthals interbred with Homo sapiens, and now we're all just kind of one species. They were essentially, Neanderthals were absorbed into Homo sapiens, which would give credence to the idea that they're actually just a subspecies, not a distinct species. Some theories go into places that are a little darker. I mean, for example, some people piggyback off the idea that there is an inherent violence in human nature. Right? That humans are innately violent organisms, and so people think that those old Homo sapiens may have actually, carried out genocide against the Neanderthals, that they actually wiped them out, and that's why they disappeared. So there's a whole range of explanations. I don't pretend to know enough to, you know, weigh in and say that I believe one is more likely than another. Though I do think they're very interesting. And I highly recommend that, if you're interested in this, you go check out some of those explanations, because it is fascinating stuff. That's our history. Right? So that's all I have for this video. Hopefully, this tickled your imagination a little bit, tickled your fancy, and I'll see you guys next time.
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
32. Vertebrates
Primates and Homonids
Video duration:
11mPlay a video:
Related Videos
Related Practice
Primates and Homonids practice set
