Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
46. Sensory Systems
Sensory System
1:44 minutes
Problem 3b
Textbook Question
Textbook QuestionWhich of these statements about taste is true? a. Sweetness is a measure of the concentration of hydrogen ions in food. b. Sodium ions from foods can directly depolarize certain taste cells. c. All bitter-tasting compounds have a similar chemical structure. d. Sourness is detected when hydrogen ions bind to membrane receptors.
Verified step by step guidance
1
Identify the correct statement about taste by understanding the mechanisms of taste perception. Taste cells have different receptors and channels that respond to different substances.
Evaluate option a: Sweetness is not related to hydrogen ions but to the presence of sugars or artificial sweeteners that bind to sweet receptors on taste cells.
Evaluate option b: Sodium ions from salty foods can indeed depolarize certain taste cells, specifically those that have sodium channels, leading to the perception of saltiness.
Evaluate option c: Bitter-tasting compounds do not have a similar chemical structure; they are diverse and can bind to various bitter receptors on taste cells.
Evaluate option d: Sourness is detected when hydrogen ions (H+) from acidic substances enter taste cells and cause changes in cell signaling, not just by binding to membrane receptors.
Recommended similar problem, with video answer:
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
1mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Taste Perception
Taste perception involves the detection of five primary tastes: sweet, sour, salty, bitter, and umami. Each taste is associated with specific chemical compounds that interact with taste receptors on the tongue. Understanding how these tastes are perceived is crucial for analyzing statements about taste.
Recommended video:
Guided course
04:46
Smell and Taste
Ion Channels and Taste Cells
Certain ions, such as sodium and hydrogen, play a significant role in taste sensation. Sodium ions can depolarize taste cells, leading to the perception of saltiness, while hydrogen ions are associated with sourness. This concept is essential for evaluating the accuracy of statements regarding how different tastes are detected.
Recommended video:
Guided course
08:38
Ion Channels and Pumps
Chemical Structure and Taste
The chemical structure of compounds influences their taste properties. While some tastes, like bitterness, can arise from a variety of chemical structures, not all bitter compounds share a similar structure. This concept is important for understanding the diversity of taste stimuli and evaluating claims about taste similarities.
Recommended video:
Guided course
01:56
Chemical Reactions
Watch next
Master Sensory Systems with a bite sized video explanation from Jason Amores Sumpter
Start learningRelated Videos
Related Practice