Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
12. Meiosis
Homologous Chromosomes
1:06 minutes
Problem 1b
Textbook Question
Textbook QuestionA human cell containing 22 autosomes and a Y chromosome is a. a sperm. b. an egg. c. a zygote. d. a somatic cell of a male.
Verified step by step guidance
1
Identify the type of cell based on chromosome count: A human cell with 22 autosomes and a Y chromosome indicates it is a haploid cell because it contains half the number of chromosomes typically found in body cells.
Understand the role of the Y chromosome: The presence of a Y chromosome indicates the cell is male.
Recall the types of male cells that could have this chromosome configuration: The options are sperm or a somatic cell of a male.
Determine if the cell is a gamete or a somatic cell: Somatic cells in males have both an X and a Y chromosome and 44 autosomes, totaling 46 chromosomes. Therefore, this cell cannot be a somatic cell.
Conclude the type of cell: Since the cell is haploid and contains a Y chromosome, it is a sperm cell.
Recommended similar problem, with video answer:
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
1mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Autosomes and Sex Chromosomes
Humans have 23 pairs of chromosomes, with 22 pairs being autosomes and one pair being sex chromosomes (XX for females and XY for males). The presence of a Y chromosome indicates male sex determination, while the autosomes carry the majority of genetic information unrelated to sex.
Recommended video:
Guided course
01:02
Autosomal Inheritance
Gametes
Gametes are reproductive cells that carry half the genetic information of an organism. In humans, sperm (male gamete) and eggs (female gamete) each contain 23 chromosomes, including one sex chromosome. A sperm cell with 22 autosomes and a Y chromosome is a typical male gamete.
Recommended video:
Guided course
07:05
How to Use Punnett Squares
Somatic Cells
Somatic cells are any cells in the body that are not gametes. They contain a full set of chromosomes, totaling 46 in humans (23 pairs). A somatic cell of a male would have 22 autosomes and two sex chromosomes (XY), not just one Y chromosome as indicated in the question.
Recommended video:
Guided course
09:40
Introduction to Cell Division
Watch next
Master Homologous Chromosomes with a bite sized video explanation from Jason Amores Sumpter
Start learning