Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
49. Animal Behavior
Animal Behavior
3:44 minutes
Problem 2a
Textbook Question
Textbook QuestionAccording to Hamilton's rule, a. natural selection does not favor altruistic behavior that causes the death of the altruist. b. natural selection favors altruistic acts when the resulting benefit to the recipient, corrected for relatedness, exceeds the cost to the altruist. c. natural selection is more likely to favor altruistic behavior that benefits an offspring than altruistic behavior that benefits a sibling. d. the effects of kin selection are larger than the effects of direct natural selection on individuals.
Verified step by step guidance
1
Hamilton's rule is a fundamental concept in evolutionary biology that explains the conditions under which altruistic behavior, where an individual helps others at a cost to itself, can evolve. It is mathematically expressed as rb > c, where r represents the genetic relatedness between the altruist and the recipient, b is the benefit to the recipient, and c is the cost to the altruist.
Option a states that natural selection does not favor altruistic behavior that causes the death of the altruist. This statement is generally true as the extreme cost of death (c becomes very high) would not typically be outweighed by the benefit multiplied by relatedness (rb), making rb > c unlikely.
Option b is a correct interpretation of Hamilton's rule. It states that altruistic acts are favored by natural selection when the benefit to the recipient, adjusted by how closely related the recipient is to the altruist (rb), exceeds the cost to the altruist (c). This aligns with the formula rb > c.
Option c suggests that natural selection is more likely to favor altruistic behavior benefiting an offspring over a sibling. This is generally true because the relatedness to offspring (r = 0.5) is usually greater than to siblings (r = 0.5 for full siblings, but the certainty of shared genes is often higher with direct offspring).
Option d claims that the effects of kin selection are larger than the effects of direct natural selection on individuals. This statement is too broad and context-dependent, as the impact of kin selection versus direct selection can vary greatly depending on specific ecological and evolutionary scenarios.
Recommended similar problem, with video answer:
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
3mPlay a video:
Was this helpful?
Video transcript
Watch next
Master Behavior with a bite sized video explanation from Jason Amores Sumpter
Start learningRelated Videos
Related Practice